Support Vector Machine for Automatic Image Annotation

نویسنده

  • Dongping Tian
چکیده

Automatic image annotation (AIA) is an active topic of research in computer vision and pattern recognition. In the last two decades, large amount of researches on AIA have been proposed, mainly including classification-based methods and probabilistic modeling methods. As one of the most common methods for AIA, support vector machine (SVM) has been widely applied in the multimedia research community, especially for image classification, image annotation and retrieval. However, compared with various SVM methods and their corresponding applications in the literature, there is almost no review research and analysis about SVM related studies. So the current paper, to start with, elaborates the basic principles of SVM. Followed by it summarizes SVM with applications to image annotation from three aspects of SVM ensemble for AIA, SVM with mixture of kernels for AIA and hybrid SVM for AIA respectively. In addition, SVM exploited in several other applications are also briefly reviewed. Finally, we end this paper with a summary of some important conclusions and highlight the potential research directions of SVM in automatic image annotation for the future.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A CAD System Framework for the Automatic Diagnosis and Annotation of Histological and Bone Marrow Images

Due to ever increasing of medical images data in the world’s medical centers and recent developments in hardware and technology of medical imaging, necessity of medical data software analysis is needed. Equipping medical science with intelligent tools in diagnosis and treatment of illnesses has resulted in reduction of physicians’ errors and physical and financial damages. In this article we pr...

متن کامل

Automatic Face Recognition via Local Directional Patterns

Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...

متن کامل

Fuzzy Neighbor Voting for Automatic Image Annotation

With quick development of digital images and the availability of imaging tools, massive amounts of images are created. Therefore, efficient management and suitable retrieval, especially by computers, is one of themost challenging fields in image processing. Automatic image annotation (AIA) or refers to attaching words, keywords or comments to an image or to a selected part of it. In this paper,...

متن کامل

Feature Selection for Automatic Image Annotation

Automatic image annotation empowers the user to search an image database using keywords, which is often a more practical option than a query-by-example approach. In this work, we present a novel image annotation scheme which is fast and effective and scales well to a large number of keywords. We first provide a feature weighting scheme suitable for image annotation, and then an annotation model...

متن کامل

Tags Re-ranking Using Multi-level Features in Automatic Image Annotation

Automatic image annotation is a process in which computer systems automatically assign the textual tags related with visual content to a query image. In most cases, inappropriate tags generated by the users as well as the images without any tags among the challenges available in this field have a negative effect on the query's result. In this paper, a new method is presented for automatic image...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015